Using the available pK_a data in non-aqueous solvents

Ivo Leito, Agnes Kütt, Märt Lõkov, Jaan Saame, Sigrid Selberg, Ivari Kaljurand, Sofja Tshepelevitsh, Agnes Heering, Astrid Darnell

Ravila 14a, 50411 Tartu, University of Tartu, Institute of Chemistry Estonia *ivo.leito@ut.ee*

The acid and base strengths, typically expressed as pK_a values, depend on solvation of the proton, as well as of the neutral and ionized forms of the acid/base.¹ Every solvent has different solvation properties. Thus, the pK_a values for the same acid/base in different solvents are also different (often dramatically different). In principle, whenever using pK_a values for predicting or rationalizing chemical processes, the pK_a values determined in the same solvent should be used. In some solvents, e.g. water, DMSO or acetonitrile large bodies of pK_a data exist, while in most solvents either very few pK_a values are available or none at all. This leads to the frequent need of estimating pK_a values in one solvent from the data in other solvent(s).^{2,3} An additional consideration is the (often problematic) quality of pK_a data in the literature.

When estimating pK_a values in one solvent based on the data in another solvent it is important to clearly define the aim. Is it needed to have the absolute pK_a value or is it rather necessary to have the acidity/basicity differences (or acidity/basicity order) within a set of compounds? Perhaps the question is just "can base B deprotonate acid A in solvent S"? If absolute pK_a value is needed then what accuracy is necessary? This presentation gives an overview to what extent such estimates can be usefully done, highlighting both successes and failures,¹ as well as how to recognize clearly erroneous pK_a data.

- Kütt, A.; Selberg, S.; Kaljurand, I.; Tshepelevitsh, S.; Heering, A.; Darnell, A.; Kaupmees, K.; Piirsalu, M.; Leito, I. pKa Values in Organic Chemistry Making Maximum Use of the Available Data. *Tetrahedron Letters* 2018, 59 (42), 3738–3748. https://doi.org/10.1016/j.tetlet.2018.08.054.
- (2) Kütt, A.; Tshepelevitsh, S.; Saame, J.; Lõkov, M.; Kaljurand, I.; Selberg, S.; Leito, I. Strengths of Acids in Acetonitrile. *Eur. J. Org. Chem.* **2021**, *2021* (9), 1407–1419. https://doi.org/10.1002/ejoc.202001649.
- (3) Tshepelevitsh, S.; Kütt, A.; Lõkov, M.; Kaljurand, I.; Saame, J.; Heering, A.; Plieger, P. G.; Vianello, R.; Leito, I. On the Basicity of Organic Bases in Different Media: On the Basicity of Organic Bases in Different Media. *Eur. J. Org. Chem.* 2019, 2019 (40), 6735–6748. https://doi.org/10.1002/ejoc.201900956.