Oxalic Diamides: A New Generation of Ligands for Cu-Catalyzed Arylation of Nucleophiles

Dawei Ma

345 Lingling Lu, Shanghai 200032

State Key Laboratory of Bio-Organic & Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences

P. R. China

madw@sioc.ac.cn

During the past two decades we have witnessed great progress in ligand-promoted copper-catalyzed arylation of nucleophiles. However, there still remain a lot of problems in this field. The most challenging problem is that less expensive aryl chlorides are inert for almost all Cu/ligand-catalyzed coupling reactions. Additionally, the catalytic loadings are still high in most cases. Recently, we found that some N,N'-diaryl, N-aryl-N'-alkyl or N,N'-dialkyl substituted oxalamides are very powerful ligands for copper-catalyzed arylation of nucleophiles. These ligands not only make Cu-catalyzed coupling of (hetero)aryl chlorides with nucleophiles proceed smoothly under relatively mild conditions, but also lead to Cu-catalyzed coupling reactions with aryl bromides and iodides being conducted at low catalytic loadings and reaction temperatures. In this lecture, we wish to describe these results.
